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Abstract: Two processes are discussed: (a) semi-inclusive electroproduction experiments; (b) 
heavy-lepton pair production in hadronic collisions. The non-perturbative approach to 
the paxton model is used to evaluate scaling properties and to consider extra contribu- 
tions due to wee partons. These latter have not been previously discussed and are found 
to be important for process (b), but absent in process (a). Quantitative agreement is ob- 
tained for process (b), including an explanation of the observed shoulder in the differen- 
tial cross section. 

1. INTRODUCTION 

In a recent paper [1] we have given a general formulation of the parton model, 
using a non-perturbative field theory approach• We then combined this with notions 
of duality, to give a description of deep inelastic electron or neutrino reactions based 
on the identification of partons with quarks [2] .' 

This discussion was concerned with inclusive experiments, where none of the 
hadrons in the final state is detected• In this paper we use the same patton model to 
consider the corresponding semi-inclusive processes: 

• s 

{ + h - + / + h  + H ,  : (1. 1) 

where ,f is a lepton, h and h'  are definite hadrons and H is an undetected system of 
hadrons (fig. 1). We also consider heavy lepton pair production: 

h + h ' - + / + Z +  H ,  (1.2) 

where again the final state hadrons are not detected (fig. 2). Both processes (1.1) 
and (1.2) have previously been discussed by Drell and Yan [3,4] using their pertur- 
bation theory approach to the parton model• However they were not able to discuss 
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Fig. 1. The semi-inclusive electroproduction process. 

h P 

Fig. 2. The heavy-lepton-pair production process. 

certain hadronic effects. These are effects associated with partons that have a very 
small fraction of  the longitudinal momentum of their parent hadron. Feynman [5] 
has emphasised the hnportance of the exchange of these "wee" partons in generat- 
ing constant total cross sections. 

We shall find (sect. 4) that pomeron exchange makes an important  contr ibution 
to the reaction (1.2), though not to (1.1). We reach this conclusion without  making 
any detailed assumption about the nature of the pomeron or how it is generated. 
We intend to discuss these latter topics in a further paper [6]. 

In sects. 2 and 3 we consider contributions to the processes (1.1) and (1.2) that 
are independent of these effects. We confirm the scaling laws already obtained by 
Drell and Yan [3,4].  However we do not agree with a detailed result of  a factored 
form for (1 .1)which they obtain. Also we obtain the additional diffractive contri- 
bution to (1.2) already referred to. This term is of the same order in the energy 
variable s except perhaps for a function of log s. The presence of  factors of  log s is, 
of  course, unlikely to be significant at physacally accessible values of  s. 

In sect. 5 we discuss the comparison of our theory with data for heavy-muon 
pair production. Good quantitative agreement is obtained. The diffractive term is 
found to dominate for small values o f q  2 while the term of  the type found by Drell 
and Yan (but modified in magnitude because of our different understanding of the 
role of  anti-patrons) is important  for larger values of  q2. The shoulder in the plot of  
d o / d x / ~  against q2 results from the change over between these two contributions. 
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2. SEMI-INCLUSIVE PROCESSES 

Consider processes of  the type (1.1), where a sum is taken over possible consti- 
tuents of  the system H and over the polarisations of  the hadron h', with an average 
over the polarisations of h. Label the momenta as in fig. 1. Following Drell and Yan 
[3], we consider the momentum p '  of  the final hadron h' as being constrained by 
assigning values to the scalar products 

' ' ' ( 2  l )  u = p  . q ,  K = p  . p .  

Together with p'2 = M'2, these relations determine p '  to within an angle, which will 
be integrated over. We write 

l f d4p'5{+'(p'2-M'2)b(p'.q-v)~(p'.p-K). 

X ~ qolju(O)lp',HXp',H[jv(O)[ p) 
H 

quq'u~q~ + 1 p'q p'q 
(2.2) 

The structure funct ions  o14y 1 and c'14fl2 are functions o f q  2, v = p • q, v' and K. The 
matrix element (2.2) is related, in a not altogether simple way, to the (connected) 
amplitude drawn in fig. 3a. The vertical line indicates that the amplitude must be 
"cut"  in the channel indicated, that is a complete set of  physical intermediate states 
H must be inserted. The (+) sign indicates that the energy variables to the left of  
this cut must be evaluated from the physical limit; the ( - )  sign requires the energy 
variables to the right of the cut to approach their real values from the complex con- 
jugate limit. 

According to the patton picture formulated in ref. [1],  the current interacts 
directly with a patton field, so that fig. 3a is equivalent to fig. 3b, where the broken 
lines denote this parton field. If there are several different types of  parton, as in the 
quark model [2],  a sum over parton types is understood. In the usual way, it is 
supposed that the four-parton/four-hadron amplitude contained within fig. 3b has 
disconnected parts. The contributions from these are drawn in fig. 4; there are two 
terms of  each type, related to each other by the replacement (parton ~ anti-parton). 
In fig. 4a the upper bubble represents a complete patton propagator; the other 
bubbles in fig. 4 are non-amputated amplitudes, that is it is not necessary to include 
separate propagators for the parton lines attached to them. 

In this section we analyse the contributions from fig. 4. Tlae possibility that there 
is also an important contribution from the connected part of  the amplitude within 
fig. 3b is disposed of in sect. 4. 
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(a) (b) 

Fig. 3. Contributions relevant to the process of fig. 1. 

q,-k~ - 

~) (b)  

Fig. 4. Those parts of the contributions of fig. 3 which are independent of wee parton effects. 

Def ine  

2v v'  K 
6o = - - -  u = - - ,  r /=  - .  (2 .3)  

q 2 '  v v 

We invest igate  the l imi t  in which  v -~ ~ ,  wi th  w,  u and  r / r e m a i n i n g  b o u n d e d .  Write 

p '  = ocp +/3q + X ,  (2 .4)  

where  the m o m e n t u m  X is def ined  to be o r t h o g o n a l  to b o t h  p and  q and  so is space- 

l ike,  X 2 ~< 0. The  c o n d i t i o n  p ,2  = M,2 and  the  de f in i t ions  (2 .3)  give, as v -~ ~ ,  
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\ u ]  

(We assume that c~,/3 and ~:2 remain bounded as u ~ oo; cf. the appendix of ref. [1 ] .) 
The first condition in (2.5) has two extreme solutions: 

either /3= O ( 1 ) ,  i.e. r / ~ 0 ,  (2.6a) 

or a - / 3 - o l l t  [ ~ \  ~ - -  ~- , i.e. u ~ - w - - .  (2 .6b)  

We shall find that these correspond to figs. 4a and 4b respectively. The class of  in- 
termediate solutions, where both/3 and (c~-/3/eo)~0 in such a way that their pro- 
duct is O(I/u),  is discussed in sect. 4. 

To analyse either diagram in fig. 4, write 

k = xp + yq + K (2.7) 

where K is orthogonal to both p and q. Again, as in ref. [1], the dominant contri- 
butions arise from the regions of k-integration where x, y and K 2 remain bounded 
as u ~ ~.  Also, as explained in ref. [1 ],  the masses of  the parton lines attached to 
the lower bubble, and its energy variable s' = ( p -k+q )  2 remain bounded. (The con- 
dition on the masses of the parton lines is the basic dynamical postulate of ref. [1 ],  
that is it is supposed that the parton field is defined such that the amplitudes con- 
cerned go to zero rapidly as the virtual parton mass becomes large. The condition on 
the energy variable corresponds to the arguments in the appendix of ref. [ 1 ] .) Thus 

( x - I - Y L 1 )  0~-1)  = O ( 1 ) ,  

and so 
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For fig. 4a there is the additional constraint that the other variable p '  • p of the 
lower bubble remains bounded, as the hadronic amplitude is supposed to go to zero 
quite rapidly when one of  its momentum transfers becomes large. This picks out the 
solution (2.6a). The calculation for fig. 4a is almost identical with that in ref. [1 ] ,  
except for the complication associated with the (+) and ( ) signs on the bubbles, 
and the extra integration over p' .  These new features will be sufficiently illustrated 
by our discussion of fig. 4b, and so we just give the results for fig. 4a: 

M2v2 c'ht'° 1 -'-> 6(7) 9"1(co,u) , 

u 3 cR,° 2 "+ 8(r/) 9"2(6o, u) , 

where the functions 9"1, 9"2 are certain integrals over the two-parton/four-hadron 
amplitude. They satisfy 

9.1 = { CO 9.2 

9.1 = 0  

for spin-~ partons,  

for scalar partons.  
(2.9b) 

In the case of  fig. 4b the energy variable ( k - p ' )  2 of  the upper bubble has to re- 
main bounded, and also the masses k 2 of  the parton lines attached to it. The latter 
condition is 

and then the former condition picks out the solution (2.6b). Because of  (2.6b), 
(2.8) and (2.10) we change to new variables: 

3 
a = - -  + - -  ( 2 . 1 1 a )  

co 212 ' 

y = l +  "~ 
2v ' 

x = Y +  ~ 
co 2is' 

(2.11b) 

and make the mathematical assumption that we may take the limit v ~ ~ under the 
integral. In this limit 

d4 k ~ 1 d2dfid2t¢ , 
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d4p'~(+)(p'2-M'2)6(p' .q-v ' )6(p ' .p-¢O 

1 
. . + _  d~d~d2xO(~)f(u2M2+x2+rlge-M'2 ) 

2v 2 

X 8 (u+ -~) 6 ( r / -~ ) .  (2.12) 

The energy variable of  the lower bubble is 

1 - 1  M 2 + ~2 ( p + q - k ) 2 = y  - 1  + ~o (2.13a) 

We have to insert a complete set of  intermediate states in this variable, taking the 
(+) limit for the left-hand part of  the resulting expression and the ( - )  limit for the 
right-hand part.  The mass variable associated with this bubble is 

( k - q )  2 = Y--- + M2 + t~ 2 . (2.13b) 
6.~ 6o2 

If  we remember that ~ is spacelike, ~2 ~ O, and that w > 1, we find that ( k - q )  2 is 
negative for the values of  (2.13a) above threshold to which the integration is re- 
stricted. Hence throughout the integration we are clear of  the branch-cuts in the 
variable (2.13b), and the presence of  these cuts does not  have to be taken into ac- 
count in the (-+) prescriptions. That is, so far as the lower amplitude is concerned, by 
unitari ty,  the integration is simply over its imaginary part. 

For  the upper amplitude the situation is more complicated. The insertion of  in- 
termediate states is in the variable 

(k -p ' )  2 = (1-r / ) ( .x-8)  + ( 1 - ~ ) 2  ~ 2  + (K-X)2 " 
co 

(2.14a) 

But tile mass variable 

M 2 
k 2 = ~. + _ _  + •2 , (2.14b) 

0o2 

has to support these intermediate states together with p ' ,  and so is also above thresh- 
old. In the left-hand part of  the amplitude the integration contour is on the upper 
side of  the k 2 branch-cut; in the right-hand part it is on the lower side. Unitarity 
tells us nothing about this; the unitarity relation involves terms with intermediate 
states in the k 2 variable in addit ion to the term we want that has intermediate states 
in the variable (2.14a). All we can say is that,  because of  our postulate that the am- 
plitude becomes small as k 2 becomes large, we expect  that the integral will converge. 



228 P. V.Landshoff and J. C.Poltcinghorne, Two high energy processes 

If we take into account the way the current couples to the partons, and handle 
the complication of  spin-~ partons by methods similar to those described in ref. [ 1 ] ,  
we finally obtain asymptotic contributions 

(2.15) 

where the functions 9-1, 9"2 obey relations exactly similar to (2.9b). Unlike Drell 
and Yan [2], we do not find that these functions have any simple factorisation 
properties; for example, the presence of  the integration variable K in (2.14a) pre- 
vents us from extracting a factor F2(¢o ) from 9"2(co,u). 

We take this opportunity to mention that in our discussion in ref. [ 1 ] of the deep 
annihilation process we encountered a situation similar to that described above, 
where the integration region is enclosed by cuts in the mass variable. We speculated 
that the pinches between the (-+) singularities in the mass variables might cause a 
divergence of  the integral, corresponding to enhanced scaling properties. Such a 
divergence has actually been encountered in a Veneziano-like amplitude [7]. It 
would certainly occur in patton models if the pinching singularities were poles. How- 
ever, if the quarks are not asymptotically observable particles there are no poles and 
in any case the poles would, for kinematic reasons, not occur on the integration 
contour. Thus we now incline to the view that the functions W1 and PW2 of  deep 
annihilation do scale (though they almost certainly cannot be obtained by a simple 
analytic continuation of the electroproduction functions F 1 and F2), and the diver- 
gence found in the Veneziano model is perhaps a reflection of  the narrow-resonance 
approximation of that model. 

3. HEAVY LEPTON PAIR PRODUCTION 

Consider now the reaction (1.2), with the momenta labelled as in fig. 2 and 
where averages over the polarisations of  h and h'  are understood. We are interested 
in the kinematic region where 

(p+p')2 

r = qZ/s fixed. 

The cross section do/dq 2 is obtained from the structure function [4] 

' ~ ~ ' . W(s,r) = f  d4qfit+)(q2-rs) f d4x e -iqx (p,p [Ju(x,J (O)lp,p) 

(3.1) 

(3.2) 
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~ q ,  q, 

Fig. 5. Contributions relevant to the process of fig. 2. 

We couple the current to the parton field as before, so that (3.2) corresponds to the 
(connected) amplitude drawn as in fig. 5, cut in the manner indicated. Again, W is 
not the imaginary part of  the two-current amplitude; the unitarity equation that 
gives the imaginary part contains extra terms, which we do not want. The "cut"  
denoted by the vertical line in fig. 5 represents insertion of  a complete set of inter- 
mediate states H, with the parts of  the diagram to either side of  the cut evaluated in 
complex-conjugate limits. 

The four-parton/four-hadron amplitude contains disconnected parts. If  we insert 
these in fig. 5, one of the resulting terms is as drawn in fig. 6. The others may be 
shown to be of  lower order in s as s ~ oo. In sect. 4 we show that a part of  the con- 
nected amplitude contributes to fig. 5 a contribution of  the same order in s as fig. 6, 
to within a possible function of  logs. This is the pomeron exchange contribution of  
fig. 7 (the zigzag line represents the pomeron). 

In this section we consider fig. 6. Write 

k i = x i p + y i p ' + r  i , i = 1 , 2 ,  (3.3) 

where the K i are orthogonal to p and p ' ,  so that they are spacelike, K 2 ~< 0. As ex- 
plained in the paragraph preceding (2.8), we require the patton masses k 2, k 2 and 
the energy variables of  the internal amplitudes to remain bounded as s ~ oo. This 
results in 

"P' ~ V 

Fig. 6. Those parts of the contributions of fig. 5 which are independent of wee patton effects. 
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k 2 ~  k2 , 

Fig. 7. Possible pomeron-exchange contributions to fig. 5. 

Yl  = Y l / s  , 

X 2 = X2/S , 
(3.4) 

where Yl ,  x2 are bounded. Then 

f d4qd4k d4k26(4)(k 1 +k 2 - q ) f ( + ) ( q 2 - r s )  

and 

1 dx  -+ ~ f  ldf~ld.~2dY2d2t~ld2g28(xlY2-r)O(Xl+Y2) (3.5) 

(P_k l )2  ~ (x 1 _ l ) f i l  + ( X l _ l ) 2  m 2 + t~ 2 . (3.6) 

When we make the required cut in fig. 6, the energy variable (3.6) has to be above 
the threshold for the upper amplitude and p0 _ kl 0 has to be positive. Hence we 
find, using also (3.5), 

0 ~ x  1 ~< 1 . (3.7) 

This means that the mass variable of  the upper bubble, 

- xcT ,  + x2M 2 + K2 (3.8) 

is negative and away from its branch cut. So as explained in sect. 2, making the re- 
quired cut in the upper amplitude is equivalent to taking its imaginary part. The 
same applies to the lower amplitude. 

Taking account of the appropriate coupling of  the currents to the partons, we 
obtain a contribution from fig. 9 proport ional  to 
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p . \  . , P 

(o-) Cb) 

Fig. 8. Possible pomeron-exchange contributions to fig. 3. 

, f X . . . ,  , , 
~,-'< ,+ ~ 3 ~-~ 

Fig. 9. Further possible pomeron-exchange contributions to fig. 3. 

1 
~ t l T i  1 d "  t d ' 2 ~  (~  i " 2 -  -~) f I a ( "  t )[7~1i('2) " (3.9) 

Here k a is the charge on the internal parton, F2a is the contribution that the parton 
makes to the electroproduction structure function F 2 (as calculated in ref. [1] ) for 
hadron h as target, and F ~  is the contribution the corresponding antiparton makes 
for electroproduction with hadron h'  as target. A similar result has been previously 
obtained by Drell and Yan [4]. 

4. DIFFRACTIVE EFFECTS 

We now consider contributions from the connected parts of the internal ampli- 
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tudes in figs. 3b and 5. Power counting arguments suggest that the effects of  
pomeron exchange within these amplitudes are likely to be important.  

Consider first the contribution of fig. 7 to heavy-lepton-pair production. Here 
the zigzag line represents the pomeron.  For  our present purposes it will not  be 
necessary to consider a detailed picture of  how the pomeron is generated. The two 
bubbles in fig. 7 are pomeron coupling functions; according to usual ideas they go 
to zero rapidly when any of  their mass variables becomes large, in exactly the same 
way as we have postulated for the bubbles in the other figures, which represent 
hadronic amplitudes. Thus the kinematics of  fig. 7 are very similar to fig. 6. There 
are two extra momentum variables, but k~ is constrained like k l ,  and k~ like k 2. 
Thus [cf. (3.3), (3.4), (3.5)] 

fd4qd4k 1 d4k 2 d4k] d4k~5 (4)(k 1 +k 2 - q ~  (4)(k' 1 +k~-q)6  (+)(q 2 - r s )  

~s 2 f dx l dY l dX 2dY 2dx'l dY'l ClX'2dY'2d2K l d2K 2d2~ l d2K'2 

P r 

X ~(x 1 -x ] )6 (y2- -y~) f i  (2)(t~ 1 +g2 - g  1 - g 2 )  ~(XlYz--T)O(Xl +Y 2)" (4.1) 

Compared with (3.5), there is an extra power of  s -1 , but this is compensated by an 
extra power of  s arising from the pomeron.  There is also expected to be a function 
of  log s, depending on the exact nature of the pomeron singularity. Hence apart 
from this possible function of log s, the contr ibution from fig. 7 appears  to be of  
the same order as that from fig. 6. 

Notice however that care is needed with this type of  power-counting argument. 
Consider the contr ibution from fig. 8a to fig. 3b, that is to the reaction (1.1). The 
kinematics are very similar to those for fig. 4a; both k and k'  are now constrained 
like k for fig. 4a. A count of  powers of  u suggests that fig. 8a gives a contr ibut ion of 
the same order as fig. 4a. But now this power of u actually multiplies an integral 
that vanishes. To see this, we require the mass variables k 2, k '2, ( q - k )  2, ( q - k ' )  2 of  
the pomeron coupling functions to remain bounded as u ~ ~ ,  and so have (2.8) and 
(2.10), together with analogous conditions on x ' ,  y ' .  Thus we define new variables 

a n d ~  as in (2.1 lb) ,  and similarly ,~' and f ' .  When we take the limit u -+ ~ under 
the integral, the only variable in which ~ survives is k 2 , as in (2.14b). Similarly .2' 
survives only in k '2. In the usual way, we suppose that the analytic structure of  the 
pomeron coupling function is such that its singularities in k 2 are just below the real 
axis. Hence on completing the contour of  Y integration with an infinite semicircle in 
the upper half-plane, we obtain a vanishing integral. The Y' integration also gives 
zero, in the same way, except that the k '2 variable is in the half of the diagram that 
should have a ( - )  label, so that the Y' contour will be completed in the lower half 
plane. (In fact this argument needs slight elaboration. We have to make a cut in the 
diagram, and this can be done in more than one way - to the right of the pomeron,  
to its left, or down the middle of it. When we make the cut to the left of  the pom- 
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eron the variable k 2 is not  integrated from - ~  to oo, and so the ~ integration does 
not  vanish. But the 2 '  integration still vanishes.) Analogous arguments also prevent 
there being a contr ibut ion of  this type in inclusive electroproduction experiments. 

An obvious question is whether the the same cancellation happens for fig. 7, that 
is whether there the Yl integration, for example, gives zero. That it does not  can be 
seen from ~3.6), (3.7) and (3.8). When s ~ oo the variable-Vl survives in the two 
variables k~ and ( P - k l ) 2 .  The singularities in each of  these variables are just below 
the real axis, but  because of  (3.7) they are on opposite sides of the real axis in the 

Yl plane. 
The reason that  fig. 7 survives, and not  fig. 8a, is that the upper bubble depends 

on more variables and so has a more complicated analytic structure. One might ex- 
pect that,  for a similar reason, the contr ibut ion from fig. 8b should be of the same 
order as that from fig. 4b. But again this is not so. The kinematics are similar to 
those for fig. 4b, with k '  constrained like k, so we again introduce variables 2, y as 
in (2.1 lb) ,  with 2 '  and 37' similarly defined. When v ~ oo the variable Y survives only 
in the variables ( k - p ' )  2 and k 2, as given in (2.14). Again the singularities in each of  
these variables are just below the real axis. But one can show that, in order to sup- 
port  the intermediate states when the necessary cut is made, the kinematics imposes 
the constraint 

< 1 . (4.2) 

This means that they are both below the real axis in the .2 plane, and so the 2 inte- 
gration vanishes. The same applies to the 2 '  integration. 

The extra pomeron contr ibution associated with fig. 7 is related to the contribu- 
tion from fig. 6 in a way that is analogous to the relation between a reggeon-pomeron 
cut and a Regge pole. The power of  s associated with the pomeron in fig. 7 is 

s~p[(KI--K~)2] , (4.3) 

which gives when integrated with respect to n 1 and n'l a variable power contribu- 
tion in the scaling limit. A pomeron which is a moving pole with intercept one 
would give a contr ibut ion which, compared with (3.9), decreases like (log s) -1 . This 
logarithmic decrease would be unlikely to affect the significance of  the term at 
physically accessible energies. 

Consider now the solution to the first equation in (2.5) that is intermediate be- 
tween (2.6a) and (2.6b): 

R 
cz -- ~" = ~ p ' r - 1  , 0 < 7 < 1 , (4.2) 

G3 
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where a and/3 are bounded. We associate this with the two pomeron exchange dia- 
gram of  fig. 9. The momenta k, k '  are constrained as before, and the energy varia- 
bles associated with the two pomerons are 

( k - p ' ) 2  ~ _~v~, , 

( p + q - k - p ' ) 2  ~ _~v l - ' y  . 
(4.3) 

The product of  these is O(v), and so again a power count suggests that the contribu- 
tion is important. But once again the variables 2 and 2 '  survive only in k 2 and k '2 
respectively, and so these integrations give zero. 

To sum up, the pomeron exchange contribution (fig. 7) to heavy lepton pair con- 
tribution is important, but for the inelastic lepton scattering the pomeron exchange 
effects are of  lower order, and figs. 4a and 4b dominate. Of course the amplitudes 
contained within these figures also receive contributions from the pomeron, but 
these only manifest themselves directly for large values of co (see refs. [ 1,2] ). 

Finally we may note that the rather surprising presence of  pomeron contributions 
in some regimes and their absence in others has been checked by calculation of  
simple Feynman diagrams which appropriately model the situations considered. In 
these c~-space calculations the contributions would arise from pinch configurations 
[8] and the conditions (3.7) and (4.2) exactly correspond to the conditions that 
these pinches do or do not trap the contour. 

5. COMPARISON WITH EXPERIMENT 

The differential cross section for (1.2) in the limit (3A) is given by [4] 

do 8~ro~ 2 
- ~ r w ( r ) ,  (5.1) 

d v @  3(q2) 7 

where W(r) is the limit of  the structure function W(S,T) of (3.2). The DY contribu- 
tion is given by 

1 ~ )ta2 ? dcoldeO2~(COl~2_r_l)F2a(COl)F2~(co2) ' (5.2) WDy(T) = r 
a 1 

where the sum is over the different partons with charges X a, and F2a and F2~ are 
the contributions, respectively, of parton a and corresponding anfi-parton g to the 
limit of  uW 2 in deep inelastic electroproduction off  the proton. 

In making comprison with experiment, using (5.3), Drell and Yan assumed equal 
momentum distributions for partons and antipartons within the proton. They find 
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on this basis that the overall scale of the contr ibution has to be reduced by a factor 
of  3 or 4 in comparison with the data if a quark-parton picture is used. They are 
also unable to explain the pronounced shoulder in the data (see fig. 10). 
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Fig. 10. Comparison with the experimental data: A is the pomeron and B the Drell-Yan term. 
The two vertical lines contain the region in which sharp fall-off is expected. Notice the log scale. 

The dual quark-parton picture [2] does not  encourage the idea that anti-quark 
distributions in the proton are at all comparable to quark distributions. The former 
are associated only with the diffractive contr ibution to deep inelastic electroproduc- 
tion whilst the latter also occur in the (larger) resonance contribution.  This reson- 
ance contr ibut ion may be calculated from the Veneziano-like model previously con- 
structed [ 10] ; the total diffractive contr ibut ion is then obtained by subtraction 

from the experimental data. The diffractive contr ibution appears to have the charac- 
ter that it is nearly zero for w less than some value w 0 lying near 3 and that for 
values of  co greater than co 0 it is approximately constant and contributes about 
0.13 to the value o f v ~ 2  P [11].  

Before comparison can be made with experiment it is necessary to take account 
of  the fact that Christenson et al. impose a cut-off on dimuon laboratory momen- 
tum at 12 GeV/c. The incident proton has energy 29.5 GeV and the transverse mo- 
mentum of  the dimuon is sharply limited to less than 1 GeV/c. If the parton comes 
from the projectile proton and the antiparton from the target proton this corre- 
sponds to a cut-off on ~o 1 in (5.2) at 2.5. 
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There is also a term where the role of  projectile and target is reversed but in that 
case the diffractive term, which gives the antiparton, is cut off  at 6°2 = 2.5, that is 
below COo, and so this term is negligible. 

The sum in (5.2) can thus be performed in the quark parton model to give a DY 
term 

2.5 dw 1 

1 

(5.3) 

Here R is the total resonance contribution to p[¥~P, which we calculated from our 
Veneziano-like model. D is-] of  the total diffractive contribution to vW~ P and we 
take for it the form 

D(w)  ~ O(w-WO) × 0.1 , (5.4) 

with w 0 ~ 3. It is not possible to estimate D more accurately at present. 
For 

r >~ 1/w 0 , (5.5) 

no part of  the range in which D is significant contributes to (5.3), and so the non- 
diffractive contribution is very small when (5.5) holds. The two vertical lines in fig. 
10 correspond to (5.5) with w 0 = 3 and 2 respectively and indicate the region where 
rapid decrease is expected due to the smallness of  the diffractive electroproduction 
contr ibution near w = 1. It is clearly not possible to calculate the details of this 
fall-off without a more detailed model of  the pomeron contribution to electroproduc 
tion since the fall is over several decades and so sensitive to very small effects. 

If  

1 
r ~< - -  (5.6) 

2.5w 0 ' 

then, assuming (5.4), the factor (5.3) becomes independent of  r and we obtain a 
contribution to the differential cross section: 

do 1.8 X 10 -33 

dx/~q 2 (q2)~ 
cm2/GeV/c  2 . (5.7) 

The thick solid curve in fig. 10 represents the contribution (5.7). One sees that it is 
in good accord with the data in the region x / ~  from 2 to 4 GeV/c 2. To the right of 
this region there is the sharp fall-off we havre already explained whose exact shape 
depends on the precise way in which the diffractive contribution to vW~ P behaves 
between w = 1 and co = 2 to 3. 
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We now turn our attention to the r e , o n  o f x / ~  less than 2 GeV/c 2 and see if we 
can explain the higher values of  do/dx/q 2 which are found there. We shall argue that 
they are likely to come from the pomeron contribution. 

A fully quantitative estimation of  the pomeron contribution resulting from (4.1) 
is not possible without an ansatz for the pomeron coupling functions which make 
up the undisplayed terms in integrand. However we can extract certain features 
which can be expected to hold for this contribution at small values of  r. Consider 
the integrations in (4.1). One of  our basic assumptions is that the bubbles in fig. 7 
are small unless the squared masses on the parton lines are finite. Since, in particular 

this constrains the effective range of  the integration o v e r  "~2 to values less than 
O(.v~- 1). Because of  the experimental lower cut-off on q, x 1 > (2.5) -1 . Thus, be- 
cause of  the tS(xlY2-.r) ,y  2 = O(r) as r ~ 0, and the effective upper limit on 2 2 is 
O(r-1) .  Similar arguments apply to ~ .  That is, we have 

f~,d)ldYlf°(~-b ~2~,  (5.8) 

with the effective limits on the first three integrations independent of r. The inte- 
grand to which (5.8) is applied contains a factor r arising from the current couplings. 
We assume also that the bubbles in fig. 7 behave, for large values of  their variables, 
in the same way as ordinary five-point functions. In particular, when either or both 
of  (P-k2)2  , (p'+k~) 2 is 0(7 "-1), the lower bubble is supposed to be O(r -1) ,  corre- 
sponding to pomeron exchange. The resulting behaviour of  the integral is O(T-2). As 
a check, similar arguments give a behaviour O(r - 1 )  for the Drell-Yan term as r ~ O. 

We cannot say anything quantitative about the factor that multiplies the r -2 in 
the pomeron term, though we expect it to be not very different from the factor that 
multiplies r - 1  in the DY term. In this case, since in the present experiment, ~--1 

60 at q2 = 1, the pomeron term is dominant for r near to 1: It gives 

do 1 1 s 
- -  oc 3 -  5 , ( 5 . 9 )  
d x / ~  2 (q2)~ (q2)i 

so that the differential cross section varies like (q2)~ for small q2 at fixed s. The 
broken line in fig. 10 represents a curve with the dependence of  (5.9) and normalised 
to the left-most experimental point in the figure. 

It seems therefore that the dual quark-parton model is capable of  giving a satis- 
factory account of  all the principal features of  the experimental data shown in fig. 
10. In particular the magnitude of  the cross section in that range o f x / ~  where it 
may plausibly be calculated from the non-diffractive contribution lends support to 
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the basic notion of the dual quark-patton model which links antiquark contributions 
in the proton with diffractive effects in deep inelastic electroproduction. 

Finally we consider the energy dependence found by Christenson et al. for the 
total cross section in their mass and momentum aperture. They found that between 
incident proton energies of 22 GeV and 29.5 GeV it increased monotonically by a 

factor of 5. 
An energy dependence enters our results in several ways. One is the range of in- 

tegration (5.4). At 22 GeV 6,31 runs from 1 to 1.8. This reduces the value of the con- 
tribution from the non-diffractive part in the central x / ~  region by a factor of 0.4. 
However more important for the total cross section is the energy variation of the 
diffractive contribution, if indeed that provides the large differential cross section at 
small r. It will have an explicit energy dependence from (5.9) together with whatever 
is the appropriate variation of the multiplying function. If we assume that the latter 
is roughly the same as that we have already calculated for the non-diffractive term 
the net factor increase between 22 and 29.5 GeV would be about 3.4, which falls a 
little short of the experimental value. 
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